Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata.

نویسندگان

  • Dianne B Jennings
  • Margaret E Daub
  • D Mason Pharr
  • John D Williamson
چکیده

Our previous observation that host plant extracts induce production and secretion of mannitol in the tobacco pathogen Alternaria alternata suggested that, like their animal counterparts, plant pathogenic fungi might produce the reactive oxygen quencher mannitol as a means of suppressing reactive oxygen-mediated plant defenses. The concurrent discovery that pathogen attack induced mannitol dehydrogenase (MTD) expression in the non-mannitol-containing host tobacco suggested that plants, unlike animals, might be able to counter this fungal suppressive mechanism by catabolizing mannitol of fungal origin. To test this hypothesis, transgenic tobacco plants constitutively expressing a celery Mtd cDNA were produced and evaluated for potential changes in resistance to both mannitol- and non-mannitol-secreting pathogens. Constitutive expression of the MTD transgene was found to confer significantly enhanced resistance to A. alternata, but not to the non-mannitol-secreting fungal pathogen Cercospora nicotianae. These results are consistent with the hypothesis that MTD plays a role in resistance to mannitol-secreting fungal plant pathogens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense.

Reactive oxygen species (ROS) are both signal molecules and direct participants in plant defense against pathogens. Many fungi synthesize mannitol, a potent quencher of ROS, and there is growing evidence that at least some phytopathogenic fungi use mannitol to suppress ROS-mediated plant defenses. Here we show induction of mannitol production and secretion in the phytopathogenic fungus Alternar...

متن کامل

Transcriptomic profile of tobacco in response to Alternaria longipes and Alternaria alternata infections

Tobacco brown spot caused by Alternaria fungal species is one of the most damaging diseases, and results in significant yield losses. However, little is known about the systematic response of tobacco to this fungal infection. To fill this knowledge gap, de novo assemblies of tobacco leaf transcriptomes were obtained in cultivars V2 and NC89 after the inoculation of either Alternaria longipes (A...

متن کامل

Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola

In this study, the physiological functions of fungal mannitol metabolism in the pathogenicity and protection against environmental stresses were investigated in the necrotrophic fungus Alternaria brassicicola. Mannitol metabolism was examined during infection of Brassica oleracea leaves by sequential HPLC quantification of the major soluble carbohydrates and expression analysis of genes encodin...

متن کامل

Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3.

Mannitol is the most abundant sugar alcohol in nature, occurring in bacteria, fungi, lichens, and many species of vascular plants. Celery (Apium graveolens L.), a plant that forms mannitol photosynthetically, has high photosynthetic rates thought to results from intrinsic differences in the biosynthesis of hexitols vs. sugars. Celery also exhibits high salt tolerance due to the function of mann...

متن کامل

Identification of a mannitol transporter, AgMaT1, in celery phloem.

A celery petiole phloem cDNA library was constructed and used to identify a cDNA that gives Saccharomyces cerevisiae cells the ability to grow on mannitol and transport radiolabeled mannitol in a manner consistent with a proton symport mechanism. This cDNA was named AgMaT1 (Apium graveolens mannitol transporter 1). The expression profile in source leaves and phloem was in agreement with a role ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2002